A fast analysis method to quantify nanoparticle uptake on a single cell level.
نویسندگان
چکیده
AIM This study examines the absolute quantification of particle uptake into cells. METHODS We developed a novel method to analyze stacks of confocal fluorescence images of single cells interacting with nano-and micro-particles. Particle_in_Cell-3D is a freely available ImageJ macro. During the image analysis routine, single cells are reconstructed in 3D and split into two volumes - intracellular and the membrane region. Next, particles are localized and color-coded accordingly. The mean intensity of single particles, measured in calibration experiments, is used to determine the absolute number of particles. RESULTS Particle_in_Cell-3D was successfully applied to measure the uptake of 80-nm mesoporous silica nanoparticles into HeLa cells. Furthermore, it was used to quantify the absolute number of 100-nm polystyrene nanoparticles forming agglomerates of up to five particles; the accuracy of these results was confirmed by super-resolution, stimulated emission depletion microscopy. CONCLUSION Particle_in_Cell-3D is a fast and accurate method that allows the quantification of particle uptake into cells.
منابع مشابه
Quantification of single-cell nanoparticle concentrations and the distribution of these concentrations in cell population.
Quantification of nanoparticle uptake into cells is necessary for numerous applications in cellular imaging and therapy. Herein, synchrotron X-ray fluorescence (SXRF) microscopy, a promising tool to quantify elements in plant and animal cells, was employed to quantify and characterize the distribution of titanium dioxide (TiO2) nanosphere uptake in a population of single cells. These results we...
متن کاملIn-vitro cellular uptake and transport study of 9-nitrocamptothecin PLGA nanoparticles across Caco-2 cell monolayer model
The uptake and transport of 9-nitrocamptothecin (9-NC), a potent anticancer agent, across Caco-2 cell monolayers was studied as a free and PLGA nanoparticle loaded drug. Different sizes (110 to 950 nm) of 9-nitrocamptothecin nanoparticles using poly (lactic-glycolic acid) were prepared by via the nanoprecipitation method. The transport of nanoparticles across the Caco-2 cell monolayer as a func...
متن کاملIn-vitro cellular uptake and transport study of 9-nitrocamptothecin PLGA nanoparticles across Caco-2 cell monolayer model
The uptake and transport of 9-nitrocamptothecin (9-NC), a potent anticancer agent, across Caco-2 cell monolayers was studied as a free and PLGA nanoparticle loaded drug. Different sizes (110 to 950 nm) of 9-nitrocamptothecin nanoparticles using poly (lactic-glycolic acid) were prepared by via the nanoprecipitation method. The transport of nanoparticles across the Caco-2 cell monolayer as a func...
متن کاملOn-demand cellular uptake of cysteine conjugated gadolinium based mesoporous silica nanoparticle with breast cancer-cells
Design, synthesis, and conjugation of mesoporous silica nanoparticles (MSNs) with biomolecules is a matter of growing interest to enhance selective uptake of contrast agents like gadolinium (Gd3+) by cancer cells. Here, by targeting xc-cystine/glutamate antiporter system in breast cancer cells, conjugation of MSN-Gd3+ with cysteine is used to enhance cancer cellular uptake of Gd3+. Reactions de...
متن کاملQuantification of Parkinson Tremor Intensity Based On EMG Signal Analysis Using Fast Orthogonal Search Algorithm
The tremor injury is one of the common symptoms of Parkinson's disease. The patients suffering from Parkinson's disease have difficulty in controlling their movements owing to tremor. The intensity of the disease can be determined through specifying the range of intensity values of involuntary tremor in Parkinson patients. The level of disease in patients is determined through an empirical rang...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanomedicine
دوره 8 11 شماره
صفحات -
تاریخ انتشار 2013